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Why do we need satellite measurements?

* Not all measurement locations
are accessible (atmosphere, ice,
ocean).

 Remote sensing facilitates
analysis of long time series.

 Many phenomena require
global measurements (e.g. SSTs
— ENSO).

 Remote sensing measurements
can usually be automated.
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What can satellites monitor?

TROPOMI trop. NO, Jan. 2023
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Tropospheric column nitrogen dioxide (NO,) from the Ozone Tropospheric column nitrogen dioxide (NO,) from the
Monitoring Instrument (OMI) onboard NASA’s Aura satellite. TROPOspheric Monitoring Instrument (TROPOMI) onboard
ESA’s Sentinel 5 — Precursor satellite.
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Satellite Orbits Types

Polar Orbits (1-2 hours). Geostationary Orbits (24 hours):

Geostationg O

22,300 miles
36,000 kilometers
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Altitude ~700 km
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Satellite Measurements: Viewing Angles

Limb Viewing

eUsed for observing the stratosphere and
upper troposphere.

eHigh vertical resolution.
e ow horizontal resolution.

eClouds are more of an issue.

Nadir Viéwing Nadir Viewing
eUsed for obtaining total column
amounts.

eHigh horizontal resolution.

eLow vertical resolution.
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Satellite Measurements

Increasing energy
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Satellite Measurements: Wavelengths 7
UV/Vis/NIR: IR:
e sensitivity down to surface e large number of potential species
* limited number of species e day and night measurements
e daytime only * some vertical resolution in nadir
* limited vertical resolution in nadir * weighted towards middle troposphere

e aerosols introduce uncertainties in light path limited lower troposphere sensitivity
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How do satellite retrievals work?

Validation
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http://www.esa.int/esaCP/SEM340NKPZD_index_1.html

Satellite Measurements: Column Quantities

Tropospheric Column NO,
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Satellite Measurements: Profiles Quantities

Thermosphere g9 km Ozone Profiles
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Absorption

The absorption of sunlight (or starlight) through the atmosphere can be used to determine the concentration
of key gases which absorb at the wavelength of this radiation (UV/visible). |.e. the Beer-Lambert law:

I, =1,e*ke! Slant Column =c. |

where k is the absorption coefficient, c is the concentration of the absorber and /is the path length.

absorbing sample of

I concentration ¢ T
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Differential Optical Absorption Spectroscopy (DOAS)
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Differential Optical Absorption Spectroscopy

The general principle for Differential Optical Absorption Spectroscopy (DOAS) can be represented by:

VCD = R(y, b, x,) = SC(y)/AMF(b, x,)

* VCD = vertical column density

e R =DOAS retrieval method

 y=observed reflectance spectrum

b =forward model parameters

* X, =trace gas apriori profile

e SC-=slant column

e AMF = air mass factor Forward model parameters include e.g. cloud top
height, cloud fraction, surface albedo and aerosol
optical thickness (i.e. scattering).

. National Centre for

We can use an Beer-Lambert law to

derive the SC and use a radiative
transfer model to estimate the AMF.
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Differential Optical Absorption Spectroscopy

l,.=1,eke! | > VC = SC/AMF

Slant Column (SC) Vertical Column (VC)

TVC = (SC-SSC)/AMF,

rop < L

Tropospheric Vertical Column (TVC) The air mass factor (AMF)
is calculated using a radiative
The stratospheric slant column (SSC) is transfer model. It is dependent on
normally estimated by a model or from a | variables such cloud fraction, cloud top
background region (e.g. Pacific Ocean height, agrosols, sur‘fac‘e albedo,
where TVC = 0.0, so the SC = SSC). solar zenith angle, viewing angle
|
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Emission .
Radiance at Top of the Atmosphere
top
Radiat 87 Z
L= [ 2 d7+8,(7,)7,(0)
equation C J
-~ _ Y
atmosphere Surface
where:
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L, — Observed radiance

B, -Planck function (for wavelength A) (function of temperature)

T(z) — Atmospheric temperature profile (function of z — altitude)
T. —Surface temperature

T,(z) — Transmittance (at wavelength 1) between z and top of atmosphere
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Spectroscopy
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A given molecule absorbs (and emits) radiation at specific €O
wavelengths related to the properties of the molecule (e.g. (1) 7 W - (1)

frequency of vibration of chemical bonds). In practice these
absorption (or emission) 'lines' can overlap with other species.
Unless a species is present in a much larger abundance and/or
has a much stronger absorption line, it is complicated to
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separate out the absorption of minor gases from each other. T V Wr - w\ //‘f (1)

0 1
Although, in theory many gases in the atmosphere could be ! Wﬁf\ Wm 0
observed in a given wavelength region, the weak absorption ‘1’ (1)

(small abundances) or interference from other absorption W\ﬂ m 1
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Infra-red absorption spectra for 6 strongly absorbing
National Centre for gases and the total absorption for a vertical beam
Earth Observation . .
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UV-Vis Nadir Viewing Observations

Satellite Operational Period Species
Total Ozone Mapping Spectrometer (TOMS-1, 2 & 3) 1978-2006 O,
Global Ozone Monitoring Instrument (GOME) 1995-2011 O;, NO,, HCHO & BrO
SCanning Imaging Absorption SpectroMeter for 2002-2012 0;, NO,, HCHO, CO, SO, & BrO
Atmospheric CHartographY (SCIAMACHY):
Ozone Monitoring Instrument (OMI) 2004-present O;, NO,, HCHO, SO,, CHOCHO &
BrO
Global Ozone Monitoring Instrument -2 2007-present 0;, NO,, HCHO, CHOCHO, SO, &
(GOME-2A & B): BrO
Tropospheric Monitoring Instrument (TROPOMI): 2017-present 0, NO,, HCHO & SO,

* Not a complete list

o
-
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Nadir Viewing Observations
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Satellite

Operational Period

Species

Measurement of Pollution in the Troposphere (MOPITT)

Tropospheric Emissions Spectrometer (TES)
Infrared Atmospheric Sounding Interferometer (1ASI-A)
Infrared Atmospheric Sounding Interferometer (1ASI-B)
Infrared Atmospheric Sounding Interferometer (IASI-C)

Cross-track Infrared Sounder (CrlS)

* Not a complete list

National Centre for
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1999-present

2005-2018

2006-2020

2012-present

2018-present

2011-present

co
0,, CO, PAN, H,0

0;, CH,, CO, NH;, CH;0H, H,0 &
aerosols

0;, CH,, CO, NH;, CH,0H, H,0 &
aerosols

0;, CH,, CO, NH;, CH,0H, H,0 &
aerosols

NH;, C.H; and others
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Which trace gases and aerosols can we retrieve?

Limb Sounders Nadir Sounders

Stratospheric O, OCS

Chlorine Species

Climate

CFCs & HCFCs

CO Aerosols
PAN

NO,

Air Quality

VOCs
UTLS O,



20

Limb Sounder — Climate: Stratospheric Ozone (O;)
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Limb Sounder — Climate: Carbonyl Sulphide (OCS)
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Limb Sounder — Climate: Nitrous Oxide (N,O)

N,O Layer Kelly et al., (2018) - doi.org/10.1029/2018GL078895

a) January-Feby/ b) \b@:gust
W — ﬂ_

1
L
30 A

-90 -60 -30 O 30 60 90-90 -60 -30 O 30 60 90
Latitude [°] Latitude [°]

o) O
o o
L 1

L

T 1—
- -

o o

s N

~
o
1
&
i
1

Ll

Altitude [km]
o
o

=
=
—

un
o
i
<
N>O vmr [ppbv]

=
o
o

40

Atmospheric Chemistry Experiment (ACE), SCISAT-1 satellite



e
Limb Sounder — Climate: CFCs .

CFC-12, September 2008

1

CFC-12 at 20 km
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MIPAS measurements of CFC-12, which has implications for the stratospheric chlorine and ozone budgets.

Clarmann (2013), doi: 10.1016/50187-6236(13)71086-5

Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS), ENVISAT satellite



Limb Sounder — Air Quality: PAN “

MIPAS Peroxyacetyl Nitrate, PAN,
(2007-2008, pptv) at 150 hPa

Pope et al., (2016) —
doi.org/10.5194/acp-16-13541-2016
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Limb Sounder — Air Quality: Ethane (C,H)

January 07 to April 12
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Limb Sounder — Air Quality: Carbon Monoxide (CO) :

Rapid ascent of pollution
— into the UTLS from
surface

1ASI CO [ppbv] at 90 Deg Lon, Wind [m/s], liotential Temperature [K] on Aug 13, 2012

20 30 40 50 60 70 80 90 100 110 120

CO Ippbvl
Summer-time Asian Monsoon: 2

MLS CO Observations

Luo et al., (2017), do0i:10.5194/acp-2017-252
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Nadir Sounder — Climate: Ozone Hole

The ‘World Avoided’ by the Montreal Protocol

2 {a) Tropospheric chlorine

Ozone Monitoring Instrument (OMI), Aura satellite

Column ozone OMI March 26, 2011 Model run MP  March 26, 2011
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Nadir Sounder - Climate: Aerosol Optical Depth (AOD) .

Aerosol Optical Depth

[ , |
c.0 0.2 c.4 06 08 1.0
March 2000

NASA Earth Observatory, https://earthobservatory.nasa.gov/



Methane (CH,) )

METHANE EMISSIONS
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Methane 2007-15 from MetOp-A satellite Dr Rob Parker, University of Leicester
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NO, Trends ’
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Emissions policies and new
technology show decreases in
OMI tropospheric column NO,
over the USA.

10%* molecules/cm 10 Russel et al., (2012), doi:10.5194/acp-12-12197-2012
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UK Trends .
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Pope et al., (2018), doi.org/10.1002/as|.817
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Emission Estimates

By using OMI tropospheric column NO,
\-, ; ,,I/ data and model reanalysis wind data,
downwind plumes (line densities) from
source can be mapped.
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Beirle et al., (2011), 600 4 !
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Emissions from satellite compare well with \ Non-linear least squares fit is
bottom-up derived emission estimates. used to infer the emission rate.
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UK Trends :
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NO, (V)

Assuming a NO, lifetime and
knowledge of the shipping fleet,
Richter et al., (2004) derived NO,
emissions from SCIAMACHY data.
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Richter et al., (2004),
https://doi.org/10.1029/2004GL020822




COVID-19 )
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Lower Tropospheric Ozone

OMI Sub-column (0-6 km) O,
(Dobson Units) — Dr Richard
Pope, University of Leeds




Lower Trop Ozone Tendencies
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Sub-column (0-6 km) O,
(Dobson Units) — Dr Richard
Pope, University of Leeds

Pope et al., (2023 - accepted), doi:

10.5194/egusphere-2023-1172
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Hazards

OMI observations of
SO, from the
|Icelandic volcano
eruption in 2010.

—90 — 28 — 10 0 10

Dr. Nigel Richards, University of Leeds



Emission Changes

38

China High SO,
India Low SO,
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Fire CO .

|IASI Total Column CO — Fire Season 2019/2020
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Fire & AOD h

1 5 ' 1.2
(-0.71) -0.74 -1,385.7 [ (-0.32) -0.75 -0.026

E MRC‘:-&— 0.8

% 2 *:-..‘__h__‘_ - o i

[=] o =~ B

= 2F 1

@ : 04}

o F -

E u

o 1E

& Tk 02fF +

EO;}O EOIOE 20:04 2'0'[36 ZOIOS 2C}I1D 2(;12 0‘200;36 fé'_OIOf;'_ 20I04 éOIOé éOIOé» 2[3:10 | 2[;12
Reddington et al., (2015), v v
ear ear
doi.org/10.1038/nge02535
1.2 . . . .

[ (0.64) 096 1.8x10°5 * Decreases in deforestation fires in the
10F Amazon reduce levels of emitted aerosols
Dsi (lower satellite retrieved AOD).

2 el ! * Lower aerosol concentrations lead to
< 3 . . .

i improved air quality and less premature
0.4+

i deaths.

02

] * Drought years are shown in red: 2005, 2007

0.0 IR

20 25 S0 35 40 and 2010.

Deforestation (x104 km?2 yr™1)



e
Oxidised VOCs .

BIRA-IASB (v14) / NASA
h2co.aeronomy.be 2009

Tropospheric Emissions Monitoring
Internet Service

(http://Www.temis.nl/index.php)

Biogenic Emissions

Anthropogenic Emissions

OMI H_CO VC [1 0*"® molec.cm™
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Methanol
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Summer 2018 heat wave
yielded enhancements in BVOC
emissions, which become
oxidised, as seen in IASI
methanol measurements.

Dr Richard Pope, University of Leeds
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