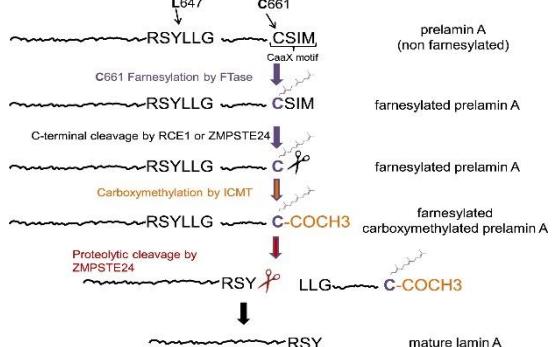


Daniel Amewoalor¹, Victoria Damoah Baffoe², Gideon Okyere Mensah¹, Charles Martyn-Dickens², Bruce Tsri¹, Josephine Oduro Tweneboah², Christian Opoku Asamoah¹, Daniel Kwesi Sabbah³, Esther Annette Tawiah², Gyikua Plange-Rhule^{2,4}, Tamara Busch⁵, Solomon Obiri-Yeboah³, Azeez Butali⁵, Anne Hing⁶, Peter Donkor⁷, Lord Jephthah Joojo Gowans^{1,3}

¹Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana, ²Directorate of Child Health, Komfo Anokye Teaching Hospital (KATH), Kumasi, Ghana, ³School of Dentistry, KNUST, Kumasi, Ghana, ⁴Department of Child Health, School of Medical Sciences, KNUST, Kumasi, Ghana, ⁵Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, USA, ⁶Department of Pediatrics, Division of Craniofacial Medicine, University of Washington, Seattle, WA, USA, ⁷Department of Surgery, School of Medical Sciences, KNUST, Kumasi, Ghana.

Correspondence: Ljj.gowans@gmail.com


Introduction

Mandibuloacral dysplasia (MAD) is a rare autosomal recessive, progeroid laminopathy with a postnatal age of manifestation typically occurring between 2 and 3 years¹.

MAD is characterised clinically by accelerated ageing phenotypes, skeletal abnormalities and lipodystrophy^{1,2}.

MAD type A (MADA) and MAD type B (MADB) result from homozygous or compound heterozygous mutations in the *LMNA* and *ZMPSTE24* genes, respectively^{1,2}.

The clinical phenotypes of laminopathies are heterogeneous and overlap

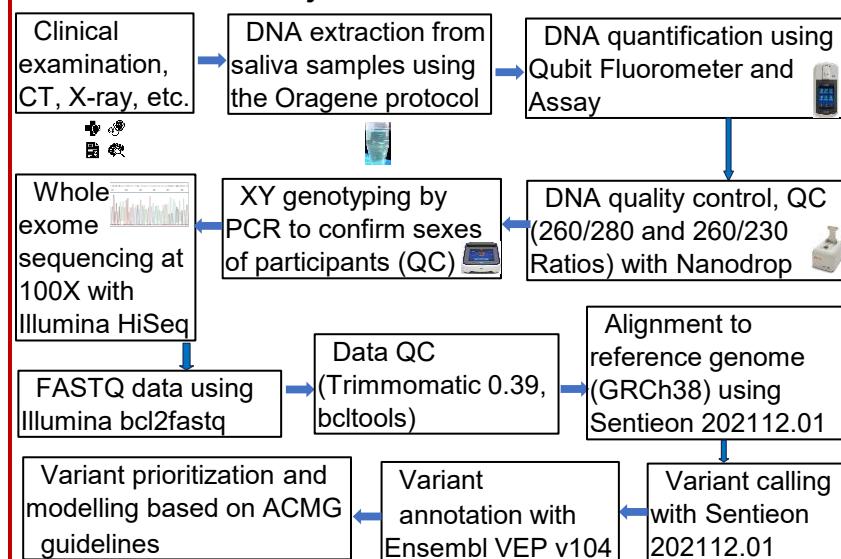
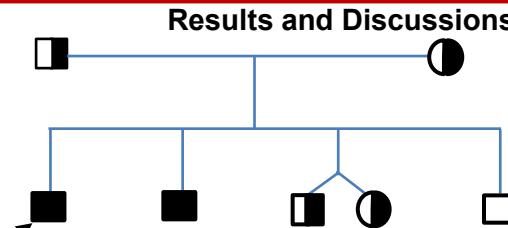


Fig.1 Post-translational modification of prelamin A into mature lamin A under nonpathological conditions².


Aims of Study

- Decipher the genetic aetiology of progeria in a Ghanaian multiplex family
- Ascertain the phenotypic presentation of MADA in the multiplex family

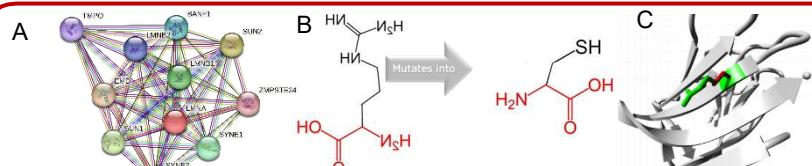

Subjects and Methods

Fig. 2. Workflow of DNA-seq (extraction, quantification, QC and whole exome sequencing and bioinformatics analysis)

Fig. 3. The pedigree of the family. This pedigree illustrates inheritance of the variant (ENST00000368300.9:c.1579C>T, p.Arg527Cys) in the *LMNA* gene. The proband is homozygous for the variant, while both parents are carriers. Among the siblings, two are heterozygous, one is homozygous for the variant, and one has the wild-type gene.

Fig. 6. A) Interaction of *LMNA* with other genes B) Amino acid change and conformational analysis using HOPE webserver C) Schematic showing the wildtype (green) and mutant (red) residues

Conclusion and Recommendations

- The WES identified a recurrent missense variant that causes MADA
- The study highlights the first documented genetic evidence of MADA in a Ghanaian family
- Genetic testing and counselling is highly recommended in Ghana

References

1. Schnabel, F., Kornak, U. & Wollnik, B. Premature aging disorders: A clinical and genetic compendium. *Clin. Genet.* **99**, 3–28 (2021).
 2. Cenni, V. *et al.* Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing. *Ageing Res. Rev.* **42**, 1–13 (2018).