
KNUST
www.knust.edu.gh

Is Facial Geometric-Encoding Crucial to Understanding 

Facial Data in Video Sequences? 
Emmanuel K. Baah1,2, James Ben Hayfron-Acquah1, Dominic Asamoah1, Kwabena Owusu-

Agyemang1
1Kwame Nkrumah University of Science and Technology (KNUST), Ghana

College of Science, Computer Science Department
2Lancaster University, Ghana, Department of Computer Science

www.knust.edu.gh

Introduction Methodology Experimental Results

Understanding video sequences based on facial expressions is 

strongly linked with NLP. Both are sequential data. Additionally, as 

these long-range attention models from NLP work will help 

understand a word in a sentence in the context of its usage, similarly, 

the subtle minute changes in video sequences extracted in segments 

would require contextualization with the entire sequence to yield a 

full understanding of the video sequences. Thus, with facial data in 

video sequences, adapting these long-range self-attention models 

from NLP would yield better results when used in modelling video 

sequences based on facial data. In the video domain, several works 

have focused on 3D and 2D convolutions, which work well with 

spatiotemporal features extracted from video tasks [8], [9], [10] and 

the recent evolution of the convolution-free video architecture based 

on divided space-time attention [11]. However, TimeSformer is a 

dedicated transformer architecture built on ViT [12] is only useful for 

action recognition and not facial related tasks.
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We introduced the FMeshformer, a domain-specific transformer for 

video modelling based on mesh positional encoding , utilising facial 

landmark coordinates as the geometric layout to influence the 

modelling, and compared our work with the TimeSformer and other 

convolution-based video networks. We demonstrate that mesh 

positional encoding based on facial landmark coordinates is efficient 

for modelling video sequences based on facial expressions. Our 

method is (1) geometric-aware, (2) achieves state-of-the-art results on 

engagement detection benchmarks, and (3) requires minimal training 

and computational cost. We plan to expand our method to other video 

datasets based on facial expression analysis, specifically those with 

balanced data.

Figure 2. ROC Comparison of TimeSformer with FMeshformer.

Table 1: Result Comparison with State-of-the-art Models

Figure 1. Proposed Architecture (FMeshfomer)

Facial Geometry Representation: The 2D landmark coordinates, 

K, in each frame t, after normalising the frames to patch grid 

coordinates, it is expressed as:

ℒt = 𝓁t,k ∈ ℝ2 | k = 1, … , K  

We build a geometric (triangular) mesh ℳt over these landmarks. 

The mesh-aware feature vector, 𝐠t,x is defined for each flattened 

patch x(p,t) with centre (ux p,t , vx p,t ) is given as:

𝐠t,x = ϕ1 ux p,t , vx p,t , ℳt , … , ϕm ux p,t , vx p,t , ℳt  , 

where ϕi can include the geodesic distances along the mesh, the 

Euclidean distances to key landmarks (mouth corners, eyes), and 

barycentric coordinates w.r.t. nearest facial triangle. This produces 

the geometry descriptor, 𝐠t,x ∈  ℝm. 

MeshPositionalEncoder: A learnable MLP denoted, fθ ⟶
 ℝd maps the geometry descriptor, 𝐠t,x, into the embedding space:

  x(p,x)
mesh =  fθ 𝐠t,x 

 

Thus, the mesh-aware token becomes:
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Figure 1 shows that the integration of the mesh-aware token 

occurs after the patch embedding, before the temporal attention, 

and these are encoded with the generic spatial encoding.

By adapting the TimeSformer, the FMeshformer becomes more 

efficient, as it employs divided space-time attention. The 

positioning of the MeshPositionalEncoder before the temporal 

attention is crucial, as it ensures that the temporal attention “sees” 

tokens whose spatial representation already encodes the geometry 

of the face. Our experiments indicate that integrating the 

MeshPositionalEncoder with the TimeSformer for video 

sequences based on facial data is not only efficient but also yields 

a slight increase in accuracy compared to the traditional “Divided 

Space-Time Attention”.

 

Our design was inspired by recent studies on video action recognition, 

which utilize both convolution-based and transformer-based models 

to understand video sequences. 

With models based on the former, the Deep Facial Spatio-Temporal 

Network [13] utilizes the pre-trained SE-ResNet-50 to extract spatial 

facial features, while integrating Long-Short Term Memory (LSTM) 

with global attention to generate an attention hidden state for 

engagement detection. 

Huang et al. [14] combine a Bidirectional LSTM with an attention 

mechanism to extract facial features in detecting engagements with 

the proposed Deep Engagement Recognition Network (DERN). 

Beyond the use of LSTM and BiLSTM, Abedi and Khan [15] employ 

an end-to-end residual network (ResNet) combined with a temporal 

convolutional network (TCN). 

While the TCN analyses the temporal differences in the video frames 

for detection, the 2D ResNet is dedicated to extracting spatial features 

across the sequential video frames.  

Our method is closely related to TimeSformer, a unique approach that 

enables the direct learning of spatiotemporal features from video 

sequences at the frame-level patch level [17], [18], [19]. Since these 

works focused on video-based applications of transformers without a 

dedicated focus on geometric encoding of the facial data, to modulate 

the TimeSformer to perform better with video sequences based on 

facial data, they must restrict the scope of the self-attention first to 

extract the frames and their corresponding landmarks related to them, 

and generate the mesh-aware encoding [20]. Narayan et al. [21] 

utilize FaceXFormer as a single, unified framework to analyse facial 

data, without an explicit focus on long-range video sequences. 

Problem Statement

The sensitivity to subtle facial changes requires a dedicated 

attention model that models the geometric layout of faces in video 

sequences, enabling the divided space-time attention architecture 

to understand the structural and dynamic aspects of facial data for 

engagement monitoring. Thus, our architecture explicitly 

integrates facial landmarks as geometric structural priors, 

providing an unambiguous signal about the configuration and 

shape of the face, thereby forcing the model to learn from patches 

with painstaking precision. Our work aims to investigate whether 

introducing a facial geometry encoding module can enhance the 

understanding of facial data in a video sequence.
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Methodology

The proposed architecture, FMeshformer, builds upon the 

TimeSformer as its base architecture and incorporates computer 

vision and geometric facial data to facilitate video understanding 

for facial expressions and their related applications. This is 

expressed in Figure 1. 

FMeshformer: The generic spatial attention overlooks the 

identity-invariant geometry of facial-expression-related videos and 

the temporal consistency of these relations. Thus, the introduction 

of the MeshPositionalEncoder in the FMeshformer is crucial for 

capturing the relative facial structure using detected facial 

landmarks.

Experimental Results

We evaluate the FMeshformer on the popular facial-expression related 

video dataset: DAiSEE [25]. We adopt the TimeSformer architecture 

[11], which was also adopted from the “Base” ViT architecture [12] 

pretrained on either the ImageNet-21K or ImageNet-1K [26]. We use 

clips of size 224 × 224, with a sample of 16 frames. The patch size is 

maintained as 16 × 16 pixels. We apply k-fold cross-validation with 5 

folds. Thus, the results were averaged from the 5 folds and evaluated 

with accuracy and receiver operating characteristic (ROC) curve 

shown in Figure 2. We adopt the classification level of two (2), being 

Engaged and Disengaged, based on the work by Malekshahi et al. 

[27]. 

Ablation Studies 

We experimented with different patch sizes, P. We observed that 

increasing the patch size to 32 results in a decline in performance, a 

phenomenon also observed in TimeSformer [1]. We therefore trained 

the model on P = 16 and did not train the model on P values lower 

than 16, as these would be computationally intensive. We also 

experimented with frame sizes larger than 224x224, which affected 

the computational cost; therefore, we maintained the original 

configuration with the number of frames for each video clip set to 16. 
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