Is Facial Geometric-Encoding Crucial to Understanding
Facial Data in Video Sequences?
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Understanding video sequences based on facial expressions 1s
strongly linked with NLP. Both are sequential data. Additionally, as
these long-range attention models from NLP work will help
understand a word 1n a sentence 1n the context of its usage, similarly,
the subtle minute changes in video sequences extracted in segments
would require contextualization with the entire sequence to yield a
full understanding of the video sequences. Thus, with facial data in
video sequences, adapting these long-range self-attention models
from NLP would yield better results when used 1n modelling video
sequences based on facial data. In the video domain, several works
have focused on 3D and 2D convolutions, which work well with
spatiotemporal features extracted from video tasks [8], [9], [10] and
the recent evolution of the convolution-free video architecture based
on divided space-time attention [11]. However, TimeSformer 1s a
dedicated transformer architecture built on ViT [12] 1s only useful for
action recognition and not facial related tasks.

The sensitivity to subtle facial changes requires a dedicated
attention model that models the geometric layout of faces in video
sequences, enabling the divided space-time attention architecture
to understand the structural and dynamic aspects of facial data for
engagement monitoring. Thus, our architecture explicitly
integrates facial landmarks as geometric structural priors,

providing an unambiguous signal about the configuration and
shape of the face, thereby forcing the model to learn from patches
with painstaking precision. Our work aims to investigate whether
introducing a facial geometry encoding module can enhance the
understanding of facial data in a video sequence.

Our design was inspired by recent studies on video action recognition,
which utilize both convolution-based and transformer-based models
to understand video sequences.

With models based on the former, the Deep Facial Spatio-Temporal
Network [13] utilizes the pre-trained SE-ResNet-50 to extract spatial
facial features, while integrating Long-Short Term Memory (LSTM)
with global attention to generate an attention hidden state for
engagement detection.

Huang et al. [14] combine a Bidirectional LSTM with an attention
mechanism to extract facial features in detecting engagements with
the proposed Deep Engagement Recognition Network (DERN).
Beyond the use of LSTM and BiLSTM, Abedi and Khan [15] employ
an end-to-end residual network (ResNet) combined with a temporal
convolutional network (TCN).

While the TCN analyses the temporal differences in the video frames
for detection, the 2D ResNet 1s dedicated to extracting spatial features
across the sequential video frames.

Our method 1s closely related to TimeSformer, a unique approach that
enables the direct learning of spatiotemporal features from video
sequences at the frame-level patch level [17], [18], [19]. Since these
works focused on video-based applications of transformers without a
dedicated focus on geometric encoding of the facial data, to modulate
the TimeSformer to perform better with video sequences based on
facial data, they must restrict the scope of the self-attention first to
extract the frames and their corresponding landmarks related to them,
and generate the mesh-aware encoding [20]. Narayan et al. [21]
utilize FaceXFormer as a single, unified framework to analyse facial
data, without an explicit focus on long-range video sequences.

The proposed architecture, FMeshformer, builds upon the
TimeSformer as its base architecture and incorporates computer
vision and geometric facial data to facilitate video understanding
for facial expressions and their related applications. This is
expressed in Figure 1.

FMeshformer: The generic spatial attention overlooks the
identity-invariant geometry of facial-expression-related videos and
the temporal consistency of these relations. Thus, the introduction
of the MeshPositionalEncoder in the FMeshformer 1s crucial for
capturing the relative facial structure using detected facial
landmarks.
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Figure 1. Proposed Architecture (FMeshfomer)

Facial Geometry Representation: The 2D landmark coordinates,
K,1in each frame t, after normalising the frames to patch grid
coordinates, it 1s expressed as:

Lt — {ft,k (S [Rz | k= 1, ...,K}
We build a geometric (triangular) mesh M, over these landmarks.
The mesh-aware feature vector, g 1s defined for each flattened

patch x, 1y with centre (uy (.0 Vx (p,t)) 1s given as:

Btx = ["’1 (“X(p,t)' Vx(p,v)? Mt) yoees Pm (“X<p,t>’ Vx(p,v)? Mt) ] ‘

where ¢; can include the geodesic distances along the mesh, the
Euclidean distances to key landmarks (mouth corners, eyes), and
barycentric coordinates w.r.t. nearest facial triangle. This produces
the geometry descriptor, g, € R™.

MeshPositionalEncoder: A learnable MLP denoted, fg —
RY maps the geometry descriptor, 8. x, Into the embedding space:

Xt = fo(8x )

Thus, the mesh-aware token becomes:

2o = Zign Xy + X
Figure 1 shows that the integration of the mesh-aware token
occurs after the patch embedding, before the temporal attention,
and these are encoded with the generic spatial encoding.
By adapting the TimeSformer, the FMeshformer becomes more
efficient, as i1t employs divided space-time attention. The
positioning of the MeshPositionalEncoder before the temporal
attention 1s crucial, as i1t ensures that the temporal attention “sees”
tokens whose spatial representation already encodes the geometry
of the face. Our experiments indicate that integrating the
MeshPositionalEncoder with the TimeSformer for video
sequences based on facial data 1s not only efficient but also yields
a slight increase in accuracy compared to the traditional “Divided
Space-Time Attention”.

We evaluate the FMeshformer on the popular facial-expression related
video dataset: DAISEE [25]. We adopt the TimeSformer architecture
[11], which was also adopted from the “Base” ViT architecture [12]
pretrained on either the ImageNet-21K or ImageNet-1K [26]. We use
clips of size 224 x 224, with a sample of 16 frames. The patch size 1s
maintained as 16 x 16 pixels. We apply k-fold cross-validation with 5
folds. Thus, the results were averaged from the 5 folds and evaluated
with accuracy and receiver operating characteristic (ROC) curve
shown 1n Figure 2. We adopt the classification level of two (2), being
Engaged and Disengaged, based on the work by Malekshahi et al.
[27].

Ablation Studies

We experimented with different patch sizes, P. We observed that
increasing the patch size to 32 results in a decline in performance, a
phenomenon also observed in TimeSformer [1]. We therefore trained
the model on P = 16 and did not train the model on P values lower
than 16, as these would be computationally intensive. We also
experimented with frame sizes larger than 224x224, which affected
the computational cost; therefore, we maintained the original

configuration with the number of frames for each video clip set to 16.
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Figure 2. ROC Comparison of TimeSformer with FMeshformer.

Table 1: Result Comparison with State-of-the-art Models

Reference Accuracy Method
: SE-ResNet50 + LSTM with
Liao etal. [13] )8.84 Global Attention
Ma et al. [28] 61.3 Neural Turing Machine
Abedi and Khan [15] 61.15 ResNet and LSTM
Abedi and Khan [15] 63.9 ResNet and TCN
Hu et al. [29] 63.9 ShuffleNet v2
Selim et al. [30] 66.39 Bi-LSTM and TCN
Selum et al. [30] 67.48 EfficientNet B7 and LSTM
TimeSformer 71.00 TimeSformer
Proposed Model 73.00 FMeshformer

We introduced the FMeshformer, a domain-specific transformer for
video modelling based on mesh positional encoding , utilising facial
landmark coordinates as the geometric layout to influence the
modelling, and compared our work with the TimeSformer and other
convolution-based video networks. We demonstrate that mesh
positional encoding based on facial landmark coordinates is efficient
for modelling video sequences based on facial expressions. Our
method 1s (1) geometric-aware, (2) achieves state-of-the-art results on
engagement detection benchmarks, and (3) requires minimal training
and computational cost. We plan to expand our method to other video
datasets based on facial expression analysis, specifically those with
balanced data.
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